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Abstract

Cultural evolution is driven, in part, by the strategies that individuals employ to acquire behavior

from others. These strategies themselves are partly products of natural selection, making the study of

social learning an inherently Darwinian project. Formal models of the evolution of social learning

suggest that reliance on social learning should increase with task difficulty and decrease with the

probability of environmental change. These models also make predictions about how individuals

integrate information from multiple peers. We present the results of microsociety experiments designed

to evaluate these predictions. The first experiment measures baseline individual learning strategy in a

two-armed bandit environment with variation in task difficulty and temporal fluctuation in the payoffs

of the options. Our second experiment addresses how people in the same environment use minimal

social information from a single peer. Our third experiment expands on the second by allowing access

to the behavior of several other individuals, permitting frequency-dependent strategies like conformity.

In each of these experiments, we vary task difficulty and environmental fluctuation. We present several

candidate strategies and compute the expected payoffs to each in our experimental environment. We

then fit to the data the different models of the use of social information and identify the best-fitting
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model via model comparison techniques. We find substantial evidence of both conformist and

nonconformist social learning and compare our results to theoretical expectations.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Unlike most animals, humans acquire large and important parts of their behavioral

repertoire via imitation and other forms of social learning. Therefore, students of human

behavior seek to understand how individuals acquire beliefs and behavior from their parents,

peers, and others. At another level, social scientists attempt to fathom the resulting complex

interactions that take place at the level of the society. Whether one is interested in the

emergence of political institutions, languages, art, technologies, or moral traditions, these

cultural elements all arose over long time periods through the combined effects of many

individual-level decisions. Understanding how people use information available from the

behavior of others is, therefore, important not only for understanding individual decisions, but

also for comprehending patterns of change and variation among human societies. And

because the psychological mechanisms that make social learning possible are partly products

of natural selection, evolutionary models are necessary to fully understand their design.

In this paper, we use microsociety experiments to investigate the psychological

foundations of social learning. Experimental microsocieties (Baum, Richerson, Efferson, &

Paciotti, 2004) consist of human participants who repeatedly interact in controlled ways

within a laboratory. Over a series of rounds, the participants make decisions that lead to real

payoffs, receive feedback, and can access some information about the decisions of their peers.

Thus,choices evolve over time, in response to both individual and social learning. Our goal is

to test and refine hypotheses, developed through formal models of the evolution of cultural

evolution, about how people regulate their reliance on individual and social learning and the

structural details of how people use social information. We are interested in (1) how social

learning changes in response to the difficulty of a task and (2) how it changes in response to

the probability of changes in the environment. We develop computational models for

estimating decision-making strategies and the strength of different components of these

strategies. We find considerable evidence of social learning, and the details of the strategies

used in any particular treatment tend to agree with numerical analyses of strategy efficacy.

Nevertheless, individuals sometimes imitate in ways that are not obviously profitable. Our

results match some of the model predictions concerning task difficulty and environmental

change, but by no means all of them.

The first section of the paper reviews the theory that motivates our experiments and lays

out qualitative predictions for how people will respond to changes in different kinds of

environmental uncertainty. Then, we present in detail our experimental choice environment

and analyze how human participants learn on their own within it. These estimates allow us to
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analyze the effectiveness of different social learning strategies within our experimental

environment. We present a quantitative analysis of the payoffs to three different social

learning strategies and the optimal reliance on each, as functions of two types of

environmental uncertainty. Then, we present two experiments that allow access to social

information and estimate participant strategies in each. Finally, we relate the findings to the

predictions derived from the theoretical literature and our own analysis.
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2. The evolution of social learning

In economics and political science, researchers seemingly discovered social learning as a

brationalQ phenomenon in the early 1990s (Banerjee, 1992; Bikhchandani, Hirschleifer, &

Welch, 1992). These models sometimes go by the labels of bherdingQ or bherd behaviorQ and,
other times, as binformational cascades.Q A number of models have been developed that show

how ignoring private information and choosing based upon the behavior of others can be

optimal. This result is surprising to many social scientists because the intuition dominating

the study of judgment and decision making has long been that more objective information

improves decisions (Gigerenzer, Todd, & the ABC Group, 1999, demonstrate other ways in

which less information use can be optimal).

These models are very similar to models of social learning first derived in biology and

anthropology in the 1980s. Formal models by Boyd and Richerson and others derived

conditions for natural selection to favor various forms of imitation (Boyd & Richerson, 1985;

Rogers, 1988). A rich body of theory now exists arguing both that natural selection will often

favor an extensive reliance on imitation and that imitation can lead to unanticipated

population-level effects (Henrich & McElreath, 2003, review much of it). A robust result of

these models is that social learning never entirely replaces individual learning–no matter how

difficult and costly–but that social learning abilities may be broadly adaptive although they

severely undermine a society’s ability to track changes in the environment and sometimes lead

to the spread of maladaptive behavior (Boyd & Richerson, 1985; Richerson & Boyd, 2004).

A handful of empirical studies have addressed formal models of social learning, whether

its general properties (Anderson & Holt, 1997; Kameda & Nakanishi, 2002, 2003) or specific

aspects of its design (Apesteguia, Huck, & Oechssler, 2003; Camerer & Ho, 1999; Coultas,

2004; Galef & Whiskin, 2004; Henrich, 2001; Kameda & Nakanishi, 2002; McElreath, 2004;

Schotter & Sopher, 2003). Social psychologists, most notably Albert Bandura (Bandura,

1977), of course did a lot of work in 1970s exploring the existence of various cues people use

in social learning. However, no formal models of social learning developed in psychology,

and most of this work was guided by intuition alone and lead to no enduring analytical work.

Economists interested in learning in games have developed a handful of candidate models

that may honestly be called bsocial learning modelsQ (Camerer, 2003). These models are very

descriptive and consider only a tiny fraction of the social learning strategies specified in the

evolutionary models developed by Boyd and Richerson and others.

We are interested in addressing two variables that recur in many of the formal evolutionary

models: (1) the difficulty of learning on one’s own and (2) the frequency of temporal
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fluctuations in the payoffs of behavioral options. These can both be thought of as types of

environmental uncertainty; however, existing models show that each leads to different

qualitative effects on the evolutionarily stable amount of social learning.

First, when it is difficult for individuals to determine the best behavior on their own, a

greater reliance on social learning arises at equilibrium (Boyd & Richerson, 1985; Henrich &

Boyd, 1998; Rogers, 1988). One way that individual learning might be error prone is if the

information available to individuals is of poor quality. For example, if interannual variation in

crop yields is large, learners will have difficulty telling if some change in cultivation improves

yield in the long run. Crop yield is uncertain, but there is a single best crop. A greater reliance

on social learning evolves because social learning can both reduce noise in estimates obtained

individually as well as help one avoid costly mistakes that others have already endured.

Second, a principle problem with imitation is that changes in the environment may make

past behavior a poor guide to current payoffs. Environments are not perfectly stationary. If the

climate or pest populations change, it may no longer be a good idea to plant what one’s father

planted. Thus, when the frequency of such changes is high, less social learning exists at

equilibrium (Boyd & Richerson, 1985; Henrich & Boyd, 1998; Rogers, 1988). Essentially,

environmental fluctuation can render useless the adaptive knowledge stored in cultural

systems. This fluctuation is another kind of uncertainty, but it reduces rather than increases

the amount of social learning at equilibrium.

On the basis of these models, as individual learning becomes more difficult, we expect more

social learning, and as the probability of environmental change increases, we expect less social

learning. While the evolutionary models do not contain enough psychological detail to say if

individuals should facultatively adjust reliance on social learning in different contexts, we

think it is reasonable to interpret the intuitions of these models in this way. Based upon cues of

difficulty of learning or fluctuation in the environment, people might adaptively regulate their

attention to the behavior of others (McElreath, 2004). People may have developed suites of

adaptive strategies from which they select, depending on different environmental cues.

Coincidental support for the prediction concerning task difficulty comes from a study of

conformity in a perceptual task by Baron, Vandello, and Brunsman (1996), in which

conformity appears stronger when the task is made more difficult. Another study that

indirectly supports these predictions is a study of consumer choice (Fasolo, 2002), in which

participants indicated they would be more likely to use the opinions of their peers in a

treatment in which there was no clear best option. McElreath (2004) finds field evidence

consistent with qualitative predictions about the difficulty of learning. Galef and Whiskin

(2004) study the effects of environmental change on social learning in rats and find results

that qualitatively support model predictions. Pingle (1995) constructed a production task in

which participants could see the choices of others and finds imitation when changes in the

production function (the underlying payoffs to options) were announced. Finally, experiments

with groups suggest that conformity is more common in tasks in which there are no obviously

correct answers (Kameda, Tindale, & Davis, 2003).

Most of the formal models addressing this problem have modeled imitation of members of

a previous generation–parents, elders, older siblings–rather than imitation of peers. In our

experiments, there are no naive individuals imitating experienced individuals, as in the
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models. Instead, individuals of equal experience have the opportunity to imitate one another.

The same predictions hold in this purely horizontal case, however, with some caveats. We

demonstrate this in a later section, in which we simulate the performance of different social

learning strategies, combined with estimates of how individuals learn individually in our

experimental design. First, however, we present the decision-making environment for our

experiments and a pure individual learning experiment.
156

157
158
159

160

161
162
163
164
165
166

167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
UNCORRECTED P
ROOF

3. Experiment 1: Individual learning

To correctly estimate the use of social learning, we have to take individual learning

seriously. In the first experiment, we introduce the task environment and explore patterns of

individual learning before introducing the possibility of social learning in later experiments.

3.1. Participants

Thirty-six undergraduates at UC Davis participating in a psychology subject pool took part

in this experiment. They participated in groups of 6–10, but each made individual decisions

and interacted only with their computer terminal through the course of the experiment. Each

participant received course extra credit, in addition to their monetary earnings (see below), for

completing the experiment. Experiments lasted about 45 min, and the average earnings in this

experiment (as in the other two we present) were US$6.

3.2. Design

The experiment was programmed using z-Tree (Fischbacher, 2002, the Zqrich Toolbox for

Readymade Economic Experiments) and administered via computer. All instructions were

done via the computer. The protocols and software are available from the authors upon

request. The experimental task was framed as a simulated agricultural choice. Each

participant faced the decision of planting one of two alternative crops (bwheatQ or bpotatoesQ)
each of 20 seasons on each of six sequentially encountered farms (for a total of 120 decisions

per participant). On each farm, the mean yield of one crop was higher than the other, but

which was higher was random on each farm. Participants were not told the actual means of

the crops, as was the case in all the experiments in this article. Each season, participants made

a planting decision and was informed of their yield from this decision. Only the most recent

yield was ever displayed to the participant, and obviously, no previous yield was displayed in

the first season on each farm.

On the first three farms, participants were told that the means were constant on each farm

across seasons, but potentially different across farms. In the last three farms, participants were

told that which crop was best could change in any given season, and that changes occurred

randomly each season, with a chance of 1/20 (communicated as a fraction).

The yields for crop i in each season were drawn from a normal distribution with mean li

and variance r2, yi~N(li,r
2). The variance was the same for both crops, while the mean of
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the more profitable crop was 13 units and, that of the less profitable, 10 units. Participants

were told at the beginning of the experiment that they would be paid US$.045 per 10 units of

yield, for average total winnings between US$4 and 8. The stated goal was to maximize their

yield by planting the crop with the higher mean yield. We manipulated r2 to adjust the

difficulty of learning on each farm. When the variance in yield is large, it is harder to learn

which of the two crops is best. When the variance is small, the quality of information

obtained from planting is much better, and consequently, individual learning more easily

discovers the best crop. Each participant planted on farms with three different unknown (but

stable) variances in yield: 0.25, 4, and 16. The different variances came in random order for

each participant, although the sequence was the same for each participant on the first three

and last three farms.

In one extra session using eight participants, we doubled the stakes to check for any large

motivation effects. The proportion of correct planting decisions in this session was slightly

lower than the other sessions. We concluded that any motivational effect from the size of the

stakes was quite minor relative to the variation in behavior in the experiment.

3.3. Results

This decision environment is a variant of the common two-arm bandit with a finite horizon.

There is a considerable literature on optimal strategies in such environments (Anderson, 2001;

Gittins, 1989); however, it is usually very difficult or impossible to actually compute optimal

choices in practice. A smaller number of researchers have investigated how people actually

make decisions in these environments (Banks, Olson, & Porter, 1997; Gans, Croson, & Knox,

2003; Horowitz, 1973; Meyer & Shi, 1995), and we know of only one serious study of a

Gaussian bandit like our own (Anderson, 2001). There are many possible models (Camerer,

2003), based upon several different views of learning. Our goal here is not to improve upon

this literature, but instead to find a robust individual learning model (or models) that we can

use as the basis of more complex models in later experiments. The models that we fit in this

section are minimally parametric generalizations of some popular candidates (Fig. 1).

To address how participants were using yields to make choices, we fit three different

individual learning models to the 4320 planting decisions from this experiment. This allows

us to narrow the candidate individual-learning models to use in later fitting exercises. The

three models are explained in Table 1. Each of the models uses a different rule to update the

estimated mean yields of each crop i in season n, mi
n, using the yields from each season

yi
1. . .yi

n. The Bayes 1 model updates the estimate in a Bayesian fashion, assuming that the

individual knows the real long-run variance in yield, r2. The Bayes 2 model relaxes this

assumption, which means that the sufficient statistic of the estimate of the mean is just the

running average of the observed yields (Lehmann, 1983). The final model, Memory Decay, is

a generalization of the basic Bayesian model. Instead of the importance of recent information

on the estimate being a function of the variance of the estimate and r2, here, it is a parameter

c to be fit from the data itself. When c=0, only the most recent information influences the

estimate. As c increases, past observed yields have a greater effect on an individual’s estimate

of the profitability of a crop.
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Fig. 1. Effects of standard deviation on task difficulty as shown by the proportion of correct planting decisions in

each season, for standard deviations 0.5 (easiest) and 4 (hardest). Standard deviation 2 (not shown) is intermediate

between these two trends.
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ECTEDEach model then uses the same functional form, a logit, to model how much each

participant cares about differences in the estimated mean yields when choosing a crop to plant

in season n. The probability of a participant planting crop i in season n is given by:

Pr
n

ið Þ ¼
exp bmn

i

� �
exp bmn

ið Þ þ exp bmn
j

� � :

The parameter b captures how much the difference between the estimated means

influences choice. When b=0, choice is random with respect to the estimates of the
UNCORR
Table 1

Models fit to individual learning data and their updating rules for computing the estimate of the mean yield of crop

i in season n

Model Updating rule Free parameters

Bayes 1 mn
i ¼ amn�1

i þ 1� að Þyn�1
i

vni ¼ avn�1
i

a ¼ r2

r2þvn�1
i

b (see main text)

Bayes 2
mn

i ¼
N n�1
i mn�1

i þ yn�1
i

Nn
i

b

Memory Decay mn
i ¼ cmn�1

i þ 1� cð Þyn�1
i

b, c

The first model, Bayes 1, updates an estimate of the mean mi and the variance in this estimate, vi. The second

model, Bayes 2, uses the number of samples from crop i, Ni, to compute the running mean. The third model is a

parameterized generalization of Bayes 1. In each case, these rules apply when crop i is chosen in round n�1.

When another crop was chosen in the previous round, each rule is mi
n=mi

n�1.
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means. When b=l, the farmer always chooses the crop with the higher mean

estimated yield.

The probability model above specifies a likelihood of observing each data point, and we fit

each model to the data by finding the values of the parameters that maximize the joint likeli-

hood of observing the data. It is possible to fit these models on an individual-by-individual

basis, estimating the strategy that best explains choice for each participant, or across

individuals, assuming that each individual is using the same strategy. Using all the data

available for each individual, Memory Decay is the best fitting model for 32 of

36 individuals, with an average estimate for c of 0.11 (maximum=0.50, minimum=0,

median=0.065). Bayes 1 is the best fitting model for three individuals, and Bayes 2 for only

one individual.

There is too little data for each participant for estimates for each treatment to be reliable,

but it is informative to lump together the individuals and fit the models within each

treatment. The relative fits of each model may still indicate relative proportions of strategies

within the participant pool. Table 2 shows the fits for the three models for the three different

variances in yield and the two different fluctuation conditions. The parameter estimates in

each case are shown below the Akaike Information Criteria (AIC), D value, and Akaike

weight (w) of each model. AIC is twice the natural log of the likelihood of observing the

data, given the model, plus twice the number of parameters in the model. Thus, smaller AIC

values indicate better fits. There is no threshold AIC value that is bgood enough.Q Fits must

be judged relative to one another. The measure D is a goodness-of-fit measure analogous to

the common R2 for linear models. For a given model x with minus log-likelihood LLx,

Dx=1�LLx/LLrandom, where LLrandom is the fit of a model in which individuals simply guess

at each decision (choose randomly). This measure varies from 0, when the fit of model x is

the same of the random model, to 1, when the fit of model x is perfect. Therefore, D
measures the absolute predictive power of a model, compared with a random choice model.

Akaike weights (w), in contrast, measure relative fit among the set of considered models.

These are computed from the AIC values. The Akaike weight, wi, for a model i in a set of

n models is:

wi ¼
exp � 0:5 AICi � AICminð Þð ÞPn
j¼1 exp � 0:5 AICj � AICmin

� �� � ;

where AICmin is the smallest AIC value in the set of models considered. Thus, the best-fitting

model has the largest w value. One interpretation of Akaike weights is that each indicates the

probability that a given model is the correct one. See Burnham and Anderson (2002) for

details on these and other measures used to compare models.

The reasons for analyzing data in this way, rather than using common null-hypothesis tests,

has been covered many times (e.g., Anderson, Burnham, & Thompson, 2000; Cohen, 1994;

Gigerenzer, Krauss, & Vitouch, 2004). Model comparison allows an arbitrary number of

competing hypotheses, each of which competes on equal footing. Different specific nonlinear

quantitative predictions thus compete to explain the observed data, rather than predictions

from only a model that we know a priori to be wrong.
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t2.1 Table 2

AIC, fit relative to a random model (D), Akaike weights (w), and parameter estimates for the three individual

learning models, by experimental farm standard deviation and probability of fluctuation of meanst2.2

Standard deviation 0.5 2 4t2.3

Fluctuation 0 0.05 0 0.05 0 0.05t2.4

Bayes 1t2.5
AIC 710.84 779.33 781.79 862.04 874.61 932.83t2.6
D 0.29 0.22 0.22 0.14 0.13 0.07t2.7
w 0.14 9.64e�31 3.72e�10 1.56e�40 4.02e�12 2.88e�36t2.8
b 0.53 0.63 0.40 0.49 0.28 0.21t2.9
Bayes 2t2.10
AIC 710.93 779.37 783.66 863.60 879.52 933.72t2.11
D 0.29 0.22 0.22 0.14 0.12 0.07t2.12
w 0.14 9.43e�31 1.46e�10 7.14e�41 3.44e�13 1.85e�36t2.13
b 0.53 0.63 0.39 0.47 0.22 0.17t2.14
Memory Decayt2.15
AIC 707.59 641.10 738.37 678.72 822.12 769.16t2.16
D 0.30 0.36 0.26 0.32 0.18 0.23t2.17
w 0.72 1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00t2.18
b 0.53 0.71 0.42 0.54 0.21 0.25t2.19
c 0.05 0.01 0.17 0.05 0.21 0.13t2.20

The measure D for a model x is defined as Dx=1�LLx/LLrandom. It gives the relative improvement in fit of the

model x, compared with the accuracy of a random model. The weights (w) give the relative fit (one best) of each

model, adjusted for number of parameters, to the other models in the analysis.t2.21
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In every case, Memory Decay is the best fitting model, and only when r=0.5 and there is

no fluctuation do Bayes 1 and Bayes 2 even approach Memory Decay’s fit. The estimates of

b show that choice becomes more random with respect to observed payoffs as both variance

in yields and the probability of fluctuation increase. The estimates of c are small in most

cases, and below 0.25 in every case. Both decreasing variance and increasing the probability

of fluctuation reduce the estimates of c. This result is quasi-Bayesian: A Bayesian pays less

attention to older data when the long-run variance in the data is smaller. New data are

informative when the data are not highly variable. Similarly, when the variance in yields here

is smaller, c, the weight given to previous estimates, is smaller. When the means may change

each season, previous estimates may become unreliable, and therefore, new data about yield

have a stronger influence on the estimate.

3.4. Discussion

Our purpose in the first experiment was to understand individual learning in this decision

environment so we can seriously model individual learning in the later experiments that also

allow social learning. The Memory Decay model, even accounting for its extra parameter, fits

much better than the two Bayesian models. We found that the degree to which individuals are

influenced by differences in yield trends downwards (as indicated by lower b estimates) when

the variances in yield are high or the environment is not stochastic. We also mapped out the
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difficulty of learning the correct crop, as a function of variance in yield. Given the large

difference in rate of learning between r=0.5 and r=4, we chose these two standard deviations
as easy and difficult treatments, respectively, for the next two experiments. Given the clear

advantage of Memory Decay in predicting choice in these data, it forms the basis of

individual learning in the following analyses.
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In this section, we use simulations to analyze the performance of three

alternative social learning strategies in the experimental environment introduced in

Experiment 1. This analysis allows us to make specific predictions about which social

learning strategies we expect in each experiment to follow, as well as how much we expect

participants to use them. The conditions of our analysis exactly mimic those of the

experiments we present afterwards.

Unlike the environment in most of the models that we discussed earlier in the paper, our

experiments allow only peer-to-peer cultural transmission. The simulations we present here

allow us to see how well the predictions about the effects of difficulty of learning and

fluctuations in payoffs hold in our modified case. They also allow us to make immediately

relevant comparisons of the effectiveness of different social learning strategies.

Many social learning strategies are available to people in natural environments. Our

experiments restrict people to strategies that rely upon the frequencies of different alternative

behaviors. We outline three different imitation strategies of this type.

Linear imitation. When individuals choose a target individual at random and copy their

observed behavior, we refer to this as Linear Imitation. The imitation is linear with respect

to each behavior’s frequency in the population of potential targets. For example, if two

alternative behaviors are present with frequencies 0.6 and 0.4, then linear imitation has a

chance 0.6 of copying the first and 0.4 of copying the second. Across iterations of social

learning, linear imitation does not change the expected frequencies of behaviors in

the population.

We model Linear Imitation in a nested model with the individual learning model fit in the

previous section. Let Li
n be the probability of choosing behavior i in round n from the

Memory Decay model. Then, the probability of choosing behavior i in round n when using

Linear Imitation is:

Pr
n

ið Þ ¼ 1� að ÞLni þ a
xn�1
i

N
; ð1Þ

where xi
n is the number of observable target individuals who choose option i in round n and N

is the total number of observable targets. The parameter a specifies the strength of reliance on

imitation versus individual learning. When a=0, the model reduces to the pure Memory

Decay model. When a=1, the model reduces to pure Linear Imitation.

Confirmation. Another way to use the behavior of a single target individual, without

simply copying his behavior, is to practice Confirmation. By Confirmation, we mean keeping
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one’s previous behavior, when a randomly chosen target individual also previously chose the

same behavior, and relying upon individual judgment otherwise.

We model Confirmation in a nested model, as we do with Linear Imitation. Assuming only

two behavioral options, the probability of adopting behavior i in round n, given access to N

target individuals, xi
n�1 of whom practiced behavior i in round n�1, is:

Pr
n

ið Þ ¼ 1� að ÞLn

i þ a
xn�1
i

N

cn�1 ¼ i; 1

cn�1 p i; L
n

i

þ N � xn�1
i

N

cn�1 ¼ i; L
n

i

cn�1 p i; 0

�
;

���
ð2Þ

where cn�1is the individual’s behavior (choice) in round n�1.

Conformity. When at least three target individuals are observable, one can do better by

using information from each of them. We define Conformity as adopting the majority

behavior among a group of targets. When there is no clear majority among the targets, we

assume that individuals fall back on individual judgment.

In our two-alternative choice environment, the probability of choosing behavior i in round

n is:

Pr
n

ið Þ ¼ 1� að ÞLni þ a
xn�1
i NN=2; 1

xn�1
i bN=2; 0

xn�1
i ¼ N=2; L

n

i

:

8<
: ð3Þ

4.1. Comparison of strategies

Which of these strategies is best in our experimental setting, and what is the optimal

amount of reliance on each? The theory we mentioned in Section 2 (Henrich & Boyd,

1998, especially) suggests that Conformity is broadly adaptive and likely to perform better

than either alternative that we have nominated. However, Confirmation has not yet been

analyzed in the thorough way that Conformity has been. Section 2 also suggests that reliance

on any social learning strategy should increase with increasing difficulty of the task and

decrease with increasing fluctuation in payoffs. To compare the three strategies above,

therefore, we conducted simulations to compute the expected payoffs to each strategy, under

different values of the variance in yields (r) and the probability of fluctuation in the means

( f), as well as across the range of reliance on each (varying a from 0 to 1). We compute

payoffs to groups composed of individuals with a single value if a, because it is easy to show

that the payoff function contains a single optimum (Boyd & Richerson, 1985). As long as all

individuals have the same ability to learn, there will be a single evolutionarily stable value of

this parameter.

The simulations use the exact experimental design described in Experiment 1, except that

the virtual participants are in fixed groups of five members and can freely observe the

previous choices, but not payoffs, of each other group member in each planting round. We

conducted 100,000 simulations at each parameter combination, where each simulation

modeled decisions in 20 rounds of planting. Unless noted otherwise, parameters are set at f=0

and r=4. Performance was measured by the mean payoff over all 100,000 simulations. The

values of the individual learning parameters, b and c, used in the simulation were taken from
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the maximum-likelihood estimates from the Memory Decay model in Experiment 1, which

are the best guess as to how participants are learning individually. Of course, individual

learning may change when social information is introduced. However, as we will demonstrate

later, the estimates of these parameters change very little in our subsequent experiments.

Simulated participants always access social information in each season (round); however, this

will not necessarily be the case in the experiments we present next, where we use both

voluntary access and use of social information to estimate strategies.

We found no situation in which Conformity, at its optimal value of a, does not

outperform both Linear Imitation and Confirmation. Fig. 2 shows the expected payoffs to

Linear Imitation, Confirmation, and Conformity, as functions of the reliance on social

learning (the value of the parameter a in the models above). Linear Imitation is never

useful, in this environment. The expected payoff to Linear Imitation is always highest

when the reliance on social learning is zero. Confirmation and Conformity both lead to

gains over both pure individual learning (when a=0) and Linear Imitation, but

Conformity outperforms both other strategies, provided that the individual uses the

optimal value of a. These results are typical of other experimental settings. Conformity

leverages the extra information available from multiple target individuals, while neither

other strategy does so. Increasing the size of social groups would increase the advantage

that Conformity holds.

However, when information from only one target is available, Confirmation is better than

Linear Imitation. Simulations with two-person groups, in which only one other individual is

observable, confirm that Confirmation’s effectiveness generalizes to these smallest possible

social groups. Conformity is not possible in these groups, however.
UNCORREC
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Fig. 2. Simulated relative performance of linear (unbiased) imitation, confirmation, and conformity. Results

plotted for simulations of five-person groups, with individual learning based on the empirical estimates. When

possible, conformity outperforms confirmation. Both conformity and confirmation outperform linear imitation.

Results shown for r=4 and f=0. The ordering of performance is the same for other values of these parameters.

Each point in the graph is the average from 100,000 simulations.
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4.2. Optimal amounts of social learning

Confirmation and Conformity both lead to gains in payoff, but the optimal reliance on

social learning, measured in the parameter a, will vary as a function of the experimental

variables. We demonstrate here how variance in yields and fluctuation in the means lead to

the predicted effects that we summarized in Section 2.

Figs. 3 and 4 plot the relative performance of Confirmation and Conformity under different

experimental conditions. In both cases, increases in the variance in crop yields make an

increased reliance on social learning optimal, while an increase in the probability of

fluctuation in the means of the yields makes a decrease in reliance on social learning optimal.

These computations verify the relevance of the general predictions from the theory reviewed

in Section 2. However, in some cases, this difference is quite small. The results of our next

two experiments allow us to address the qualitative nature of these predictions, as well as
UNCORRECTED P
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Fig. 3. Simulated relative performance of confirmation under different experimental conditions, for five-person

groups. Unless noted otherwise, f=0, r=4. (A) When the variance in yields increases, more Confirmation-

based social learning is optimal. (B) When the environment fluctuates more, less Confirmation-based social

learning is optimal.
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Fig. 4. Relative performance of Conformity-based social learning under different experimental conditions, for five-

person groups. Unless noted otherwise, f=0, r=4. (A) When the variance in yields increases, more Conformity-

based social learning is optimal. (B) When the environment fluctuates more, less Conformity is optimal.
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UNCORmeasure how calibrated participants are to the decision environment. We do not expect

participants to select their strategies optimally, but we do expect detectable shifts in the

direction of optimal strategy.

4.3. Predictions for Experiments 2 and 3

Our next two experiments allow access to different amounts of social information. Using

the analysis above, we outline a set of predictions for how our estimates of participant

strategy will respond to changes in experiment parameters. In Experiment 2, we modify

Experiment 1 to allow access to the behavior of a single peer. In Experiment 3, participants

have access to the behavior of all group members.

4.3.1. Choice of social learning strategy

We expect participants to rely on Conformity when possible, but to rely on Confirmation in

Experiment 2, where information from only one peer is available. Linear Imitation is not
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useful in either experiment, and thus, we predict that participants will not use it, provided the

cues provided in the experiment lead them to select appropriate strategies.

4.3.2. Response to variance

We expect participants to rely on social learning more (as indicated by increased estimates

of a) when variance in yield increases, regardless of which strategy they select.

4.3.3. Response to fluctuation

We expect participants to rely on social learning less when fluctuation in the mean yields

increases, regardless of which strategy they select.
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5. Experiment 2: One social target

In the second experiment, we added simple one-model social learning to estimate the

participants’ tendencies to access this information and how they use it. Recall that our reading

of the theory suggests that linear social learning in this purely peer-to-peer laboratory culture

is of little value. Instead, we expect to see Confirmation and an increase in reliance upon it

when the variance in yield increases and a decrease in reliance upon it when fluctuation in the

means is possible.

5.1. Participants

Fifty-five undergraduates from a UC Davis psychology subject pool participated in this

experiment. None of them had participated in the previous experiment. They participated in

sessions of size 6–10, which were divided into anonymous groups of four to six individuals,

depending only upon the contingencies of daily attendance. There were 12 groups total: 8 of

size 4, 3 of size 5, and 1 of size 6. Participants always knew the actual size of their group, but

they never knew the identities of the other people in their group. Participants received course

extra credit, in addition to their monetary payments.

5.2. Design

This experiment builds upon Experiment 1 by providing one additional piece of

information each season, prior to planting. Again, the experiment was programmed using

z-Tree (Fischbacher, 2002). All instructions were done via the computer. The protocols and

software are available from the authors upon request. The software assigned participants to

groups at random and passed decisions among the clients in response to participant behavior.

After the first season at each farm, each participant had the option of clicking a button to view

the most recent planting decision (but not yield) of one randomly chosen, anonymous

member of their own group. Participants were told that members of the same group always

experienced the same environment: The means and variances of the crops were the same for

all members of a group, at all times, even when the means occasionally switched in the last
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three farms. Environmental fluctuations occurred simultaneously within groups, and the

participants knew this as well.

5.3. Results

We collected information on the rates at which participants accessed the decisions of other

members of their groups (bsocial informationQ). We use these data, together with individual

planting decisions, to model social learning strategy.

There is impressive variation among participants in the rate that they access social

information. Fig. 5(A) plots the distribution of individual click frequencies. Twenty

participants never or very rarely accessed social information. The remainder are spread over

the entire range of click frequencies. These data alone suggest considerable variation in

participant strategy. Fig. 5(B) plots the frequency of clicks for social information averaged

across participants but by season (experimental round). The frequency peaks at 0.5 in the

second season, the first season social information is available, and declines to just above 0.2

by the final season.

Table 3 shows the estimated changes in odds of accessing social information. These

estimates come from a logit probability model with individual fixed effects, allowing us to

compare changes across treatments, within participants. Access to social information

increases with increasing variance and decreases with increasing probability of fluctuation

in the means. A modest interaction term is retained in the optimal AIC model, as well.

While the presentation of the probabilities of access to social information gives hints that

social information is of interest to individuals and that participants vary in their interest, they

do not tell us much about how participants might be using the information they acquire from

other group members. To address this question, we fit the 6360 decisions from this

experiment to three candidate models. The first model is the pure individual learning model

Memory Decay from the previous experiment. The second model is the Linear Imitation

model that we presented in Section 4 (Eq. (1)), which models social learning by introducing

one new parameter to the Memory Decay model.

The third model that we fit the data from Experiment 2 is Confirmation (Eq. (2)), also

introduced in Section 4, which models participants using social information in a way distinct

from copying. For this strategy, we assume the individual checks another participant to see

that someone else is doing the same thing as themselves. If the other individual planted the

same crop last round as the focal individual, then the focal individual keeps their previous

behavior. Otherwise, they rely upon individual learning.

Because participants could see the behavior of only one other individual, Conformity as

modeled in Eq. (3) is not possible in this experiment.

Table 4 summarizes the fit and parameter estimates of each of three models, across

individuals. Note that these fits are computed assuming that in any round in which a

participant does not access social information, the parameter a=0, as if they rely

exclusively on individual learning for that round. In the easy standard deviation (0.5), the

Linear Imitation model fits the best (w=0.78) when there is no fluctuation possible, and

the Confirmation model is superior when there is fluctuation (w=0.99). In the hard
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Fig. 5. Access to social information, collapsed across all four experimental farms in each session. (A) Distribution

of frequency of clicking to access social information, by individual. (B) Frequencies of clicks to access social

information, averaged across individuals, by season. Access peaks in the second season and declines steadily until

the final season of each farm. The same group always experienced the same environment: The means and

variances of the crops were the same for all members of a group, at all times, even when the means occasionally

switched in the last three farms.
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standard deviation (4), there is much less dominance of social learning. Each of three

models earns good support, although Confirmation consistently does somewhat better than

Linear Imitation.

5.4. Discussion

In this experiment, we added only the option of seeing the most recent planting decision

of a single anonymous member of one’s own group, who planted under the same

conditions. We find that participants choose to view social information slightly more often

when the variance in yields is high and when there is no fluctuation in the means through
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t3.1 Table 3

Estimated changes in odds of accessing social information in each experimental round, by standard deviation and

probability of environmental fluctuationt3.2

Experiment Factor Estimate Standard error Odds ratiot3.3

2 S.D. 0.5 �0.161 0.036 0.852t3.4
Prob fluct 0 0.135 0.035 1.144t3.5
Interaction �0.087 0.035 0.917t3.6

3 S.D. 0.5 �0.087 0.038 0.917t3.7
Prob fluct 0 0.433 0.038 1.541t3.8
Interaction �0.110 0.038 0.896t3.9

These estimates used participant fixed effects to control for individual dispositions and then measure deviations

across treatments in a standard two-factor logit probability model. This means that changes within participants are

compared across farms, rather than absolute rates of clicking, allowing participants to serve as their own controls.

Access to social information increases with increasing variance and decreases with increasing probability of

fluctuation in the means. In both Experiments 2 and 3, the full model with both factors and the interaction term

provides the best adjusted fit (AIC), compared with simpler models with fewer factors. All observations are included

in analysis.t3.10
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time. We also found substantial evidence of social learning from the model fitting exercise.

However, while the social models fit considerably better than the individual learning

model for the low-variance farms, this should not be interpreted to mean that all

participants were using social information. The social models only differ from the
UNCORRECTTable 4

AIC, fit relative to a random model (D), Akaike weights (w), and parameter estimates for the three candidate

models fit to the data from Experiment 2

Standard deviation 0.5 4

Fluctuation 0 0.05 0 0.05

Memory Decay

AIC 1302.06 1353.61 1852.76 1490.37

D 0.39 0.41 0.19 0.30

w 0.06 1.97e�05 0.35 0.27

b 0.66 0.79 0.23 0.32

c 0.01 0.00 0.19 0.00

Linear imitation

AIC 1296.88 1345.37 1853.30 1491.17

D 0.39 0.41 0.19 0.30

w 0.78 1.21e�03 0.27 0.18

b 0.66 0.79 0.24 0.33

c 0.02 0.00 0.19 0.00

a 0.14 0.18 0.04 0.05

Confirmation

AIC 1301.02 1331.94 1852.80 1489.04

D 0.39 0.42 0.19 0.30

w 0.10 9.99e�01 0.34 0.52

b 0.65 0.76 0.23 0.32

c 0.00 0.00 0.20 0.00

a 0.17 0.42 0.09 0.17
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individual learning model when an individual, in fact, viewed social information. Some

individuals rarely did so. By the end of an experimental farm, only about 20% of

participants choose to view social information. Thus, the better fit of the social model applies

only in those cases, which are overall the minority. When participants did view social

information, the evidence indicates that it had a detectable effect on their choices, as indicated

by the model fits. Many individuals never or almost never viewed social information, and

hence, these individuals must be described as individual learners, despite the better fit of

Linear Imitation or Confirmation.

In the General discussion, we interpret the rates of access to social information together

with the model fits to evaluate the results of the experiments with respect to the expectations

that we developed at the beginning of the paper.
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R6. Experiment 3: Conformity

While Experiment 2 addresses the most simple kind of social learning possible in our

experimental design, rarely do people find themselves in a situation in which they can

observe the behavior of only one peer at a time. Experiment 3 was designed to address how

participants use social information from more than one individual. Our reading of the formal

literature suggests that the use of a majority rule, adopting the most common behavior among

models, is more valuable here than simply imitating in the linear or confirmation fashion that

was possible in the previous experiment.

6.1. Participants

Forty-nine undergraduates from UC Davis, recruited from classrooms, participated in this

experiment. None of them had participated in the previous experiments. They participated in

sessions of size 6–10, which were divided into anonymous groups of four to seven

individuals, depending only upon the contingencies of daily attendance. There were nine

groups total: two of size 4, three of size 5, two of size 6, and two of size 7. Participants always

knew the actual size of their group.

6.2. Design

This experiment builds upon Experiment 2 by allowing participants to click a button each

season after the first, to view the most recent planting decisions of all other group members.

All instructions were done via the computer. The protocols and software are available from

the authors upon request. As in Experiment 2, participants viewing social information could

not identify individuals by name or number or any other identifying information, nor could

they view the payoffs that these individuals received. They simply saw a randomized vector

of crop planting choices (wheat, wheat, potatoes, and wheat).

Again, participants were told that members of the same group always experienced the same

environment: The means and variances of the crops were the same for all members of a group,
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at all times, even when the means occasionally switched in the last three farms. Environmental

fluctuations occurred simultaneously within groups, and the participants knew this.

6.3. Results

As in Experiment 2, we collected information about how often participants chose to view

the decisions of their peers. Overall, the pattern of clicks is similar to that in Experiment 2:

The frequency is highest at the beginning of each farm and stabilizes above zero before

season 20. Table 3 summarizes the frequencies of clicks for social information. As in

Experiment 2, there is more access to social information in the high-variance farms,

especially when fluctuation in the means is absent. There is less access when fluctuation in

the means is possible.

While it makes sense to hypothesize that individuals might click more often in larger

groups, which contain more information, there is no discernible relationship between group

size and frequency of clicks: n=4, 0.29; n=5, 0.45; n=6, 0.36; n=7, 0.25.

As with the previous experiments, we analyzed the data from Experiment 3 to determine

the ability of different choice models to predict participant planting decisions. The first model

that we applied to these data is the Memory Decay model from Experiment 1. This is the

baseline individual learning model. The second model that we fit to the data is the Linear

Imitation model presented in Section 4 and analyzed already in Experiment 2 (Eq. (1)). The

third model that we fit to these data is Confirmation (Eq. (2)), and the fourth, Conformity,

introduced in our analysis in Section 3 (Eq. (3)).

We fit these three models to the 5880 decisions made in Experiment 3. Table 5

summarizes the overall model fits. As in previous tables of this kind, we show the overall fit

using the AIC, Akaike weights (w), and D values. Each model fit is followed by its maximum

likelihood parameter estimates. Overall, Linear Imitation and Conformity fit the data much

better than either the pure individual learning model or Confirmation. Confirmation does a

comparatively poor job everywhere, even compared with pure individual learning. In the

absence of environmental fluctuation, Linear Imitation better predicts choice, compared with

Conformity, whether variance in yields is high or low. When environmental fluctuation is

present, Conformity better predicts choice, when the variance in yields is low (r=0.5). When

the variance is high (r=4), Linear Imitation and Conformity are essentially tied in fit to the data.

Looking at the parameter estimates of a, the reliance on social learning relative to

individual learning, the proportions of social learning are overall much higher in this

experiment than in Experiment 2. Moving from small variance in yield to large, the estimates

of reliance on social learning are relatively much smaller.

Environmental fluctuation–the probability of change in the mean yield of each crop–

seems to favor Conformity. In the low-variance farms, Conformity is a much better

predictor of choice than is Linear Imitation, provided that the probability of fluctuation is

above zero. In the high-variance farms, Conformity ties with Linear Imitation when

fluctuation is possible but is far inferior to it when fluctuation is not possible. However,

looking at the fits to the individual-by-individual data, when r=4 and the probability of

fluctuation is .05, Conformity fits the data better than Linear Imitation does. Of
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t5.1 Table 5

AIC, fit relative to a random model (D), Akaike weights (w), and parameter estimates for the three candidate

models fit to the data from Experiment 3t5.2

Standard deviation 0.5 4t5.3

Fluctuation 0 0.05 0 0.05t5.4

Memory Decayt5.5
AIC 1753.49 1321.05 1460.98 1518.32t5.6
D 0.24 0.33 0.18 0.28t5.7
w 7.23e�11 1.91e�10 2.54e�03 3.97e�03t5.8
b 0.50 0.64 0.21 0.28t5.9
c 0.00 0.03 0.13 0.00t5.10
Linear imitationt5.11
AIC 1706.80 1293.83 1449.17 1508.64t5.12
D 0.26 0.34 0.19 0.29t5.13
w 0.99 1.55e�04 0.93 0.50t5.14
b 0.49 0.60 0.23 0.31t5.15
c 0.00 0.00 0.11 0.00t5.16
a 0.48 0.60 0.23 0.15t5.17
Confirmationt5.18
AIC 1755.49 1323.20 1462.96 1519.17t5.19
D 0.24 0.33 0.18 0.28t5.20
w 2.66e�11 6.51e�11 9.42e�04 2.60e�03t5.21
b 0.50 0.65 0.21 0.29t5.22
c 0.00 0.06 0.11 0.00t5.23
a 0.00 0.00 0.00 0.05t5.24
Conformityt5.25
AIC 1716.61 1276.29 1454.40 1508.68t5.26
D 0.26 0.35 0.18 0.29t5.27
w 7.38e�03 1.00 0.07 0.49t5.28
b 0.47 0.58 0.21 0.30t5.29
c 0.00 0.00 0.11 0.00t5.30
a 0.33 0.54 0.12 0.13t5.31
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49 participants, the choices of 38 are best predicted by Conformity, while the choices of 11

are best predicted by Linear Imitation. The evidence suggests that participants are likely to

use some strategy approximating Conformity, provided that there is the possibility of

fluctuation in the means. Otherwise, there is little evidence of the use of a strategy that

integrates the social information in a positive frequency-dependent way.

6.4. Discussion

This experiment allowed participants to see behavior from all other members of their

group, and we expected this to lead to conformist crop planting decisions. This expectation

was partly upheld, however, not in the absence of environmental fluctuation. When there is

no chance of fluctuation in the means of the crops, participants appear to learn socially, but

the majority of them are not conformist. We did find, in agreement with the analyses in

Section 4, that participants are likely not using a Confirmation strategy.
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7. General discussion

The most obvious and least surprising result of our experiments is that many participants

used the choices of their peers in making their own choices. It is more surprising that we

found evidence of simple Linear Imitation in Experiment 2, where it is little used. Of course,

imitation in the one-peer experiment is not much worse than learning on one’s own; the

payoff difference between imitating a random peer and learning on one’s own in this case is

not very large. Nevertheless, the sizable proportion (although not the majority) of participants

who seem to have used simple imitation deserves an explanation. We imagine two reasons

that individuals may imitate when there is no structural feature of the environment or strategy

that makes it profitable. First, some individuals learn better than others do. Because some

individuals are more likely to arrive at correct behavior faster, for those who imagine

themselves slower than average, even Linear Imitation can be profitable. Second, people may

be carrying over strategies that are broadly useful in their daily lives into the experiment. It is

unreasonable to expect that participants approach experiments as naive yet rational agents.

Patterns of imitation behavior in normal life may encourage people to imitate in these

experiments, even when there is no apparent advantage to such a strategy.

It is also unclear why participants use Linear Imitation, instead of Conformity, in the no-

fluctuation treatments of Experiment 3. On those farms, individuals would have done better

had they used Conformity, yet we found little evidence of Conformity there, although we

found considerable evidence of it when the environment could fluctuate. Participants are

clearly responding to the experimental treatments, and further work will be needed to

understand how the cues that the experiment provides activate existing strategies designed for

learning in natural settings.

The predictions from theory suggested that individuals would rely more on social learning

when (1) the variance in yields was larger and (2) there was no possibility of environmental

fluctuation. The clicks to access social information agree with these predictions. Only in

Experiment 2, when the standard deviation of yields was small, is there little noticeable effect

on the frequency of clicks to access social information (although the measured effect is in the

right direction even then). In all other cases, the rates of clicks increase in treatments with

higher standard deviations and decrease in those with fluctuation in the means.
However, estimates of reliance on social learning do not generally agree with the

predictions. To make the process data (clicks) and model estimates comparable, we need to
multiply frequencies of access to social information by the estimated reliances on social
learning. We compute the estimated reliance on social learning in each treatment by
computing the model-averaged estimate of a in each case, using Akaike weights (w) for
weighting the different estimates from different models. The model-averaged estimate of
reliance on social learning for a set of n models is:

ā ¼
Xn
i

wia
1

i ;

where aisuper 1 is the maximum-likelihood estimate of a for model i. For Memory Decay,

we set asuper 1 to zero (no reliance on social learning). We compute the total rate of social
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learning, then, by multiplying each rate of information access by the model-weighted reliance

on that information.

Table 6 summarizes the total estimated frequencies computed in this way. In Experiment 3,

the frequencies of social learning decrease, as predicted, when we introduce fluctuation in the

mean yields (probability of fluctuation .05). However, in Experiment 2, fluctuation appears to

have had the opposite effect: Social learning increases in that case. The effect of increasing

the variance in yields is contrary to prediction in every case. In both Experiments 2 and 3, the

total estimated frequencies of social learning decrease when the variance in yield increases.

One possible explanation of this counter-theoretical result is that participants are

interpreting large variance in the mean yields as environmental unpredictability of the sort

introduced by fluctuation. We cannot address this possibility with our data, but new

experiments using a different mechanism for manipulating the difficulty of individual learning

would help to deal with it. Another possibility is that we simply have the wrong models. All

models are simplifications. If the models of social that learning we have considered are

missing some structurally important feature of individuals’ imitation behavior, then our model

estimates will simply tell the wrong story. Notice that the process data, the clicks to access

social information, agree with the theory. These process data have the virtue of not being

constructed through an intervening model: They are plainly measured. Skeptics of our model

estimates may therefore take comfort in the less uncertain process data. Either way, whether

because of the details of the difficulty manipulation or the structural inaccuracy if our models,

there is a problem to be solved, to reconcile theory with our experimental results.

Many other models are possible. A linear combination of the models that we have

presented would explicitly model the idea that individuals sometimes use all of the

hypothesized strategies. It is not necessary to include this model in the analysis, however,

because the fit relative influences of each strategy would simply be proportional to the Akaike

weight of each model, fit separately. Our experiments cannot distinguish between the mixed-

strategy and pure-strategy conceptualizations of the results. And because much more data per-

individual would be necessary to achieve reliable estimates of individual strategies, we cannot

solve the problem in this manner either. Many other functional forms will occur to readers, as
UNCOTable 6

Total estimated frequencies of social learning in each experiment and treatment

Experiment

Standard

deviation

Probability of

fluctuation

Frequency

of clicks Weighted a
Total frequency

of social learning

2 0.5 0 0.24 0.13 0.032

0.5 .05 0.23 0.42 0.099

4 0 0.32 0.04 0.014

4 .05 0.26 0.10 0.025

3 0.5 0 0.35 0.48 0.170

0.5 .05 0.26 0.54 0.140

4 0 0.42 0.22 0.091

4 .05 0.29 0.14 0.040

These frequencies come from multiplying the frequency of clicks to view social information by the Akaike-

weighted estimated influence of social learning in each treatment.
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well. Certainly, the number of specific models of these processes is very large. However, we

have kept our family of models small and restricted to those that emerge easily from the

general theory. We did this to avoid the temptation to fish for functional forms that fit. In

addition, once one begins trying many different functions from different families, it is harder

to compare the relative fits of the models. The number of parameters in each model can easily

become an inadequate measure of model complexity. There are metrics like minimum

description length that are meant to address these concerns; however, their use and

interpretation remain controversial.

We found good evidence of individual variation in strategy in all three experiments. Yet,

we have made little effort yet to explain this variation. Variation in individual learning ability/

skill may explain some of the estimated variation in strategy. It is tempting also to

hypothesize about covariance with other individual characteristics. We hope to address the

data in this way in later work.
 R
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By way of conclusion, we offer several cautions. First, these experiments obviously

explore only a tiny fraction of the universe of meaningful learning environments and potential

strategies available to people. Progress in understanding the design of social learning will

come from a body of detailed work fully exploring a number of decision environments and

transmission schemes (information structures) while iteratively revising the quantitative

models that motivate them. We find work by Tatsuya Kameda and his colleagues (Kameda &

Nakanishi, 2002, 2003) inspiring in this regard. It is not enough to simply nominate the

existence of a collection of beffectsQ and test for their existence. Mature predictive models of

some depth come about by iteratively building complexity into a research design and the

models that it is meant to address.

Second, the depth of this kind of work needs to be balanced by breadth. Replication, of

both parameter estimates and general results, both cross-culturally and across cultural

domains, is essential. We do not imagine that social learning strategies, which themselves can

be learned, are invariant human universals. The strength of conformity, in particular, likely

varies cross-culturally and situationally. Students in Western societies are repeatedly

admonished to bthink for themselves.Q It is also important to notice that students, the

favorite subjects of psychologists and economists alike, are an odd population to study to

understand how people learn. Students in university are trained to learn in particular ways that

are unlikely to be representative of most adults. Constructing theories of human nature based

on student data is always hazardous, but particularly so in this case.

Even when considering members of a single study population, parameter and strategy

estimates from any one sample are notoriously prone to overfitting. Using the estimates that

we have developed here to predict the choices of new participants would go a long way to

estimating the narrow-sense robustness of our results.

Ultimately, results from laboratory studies like this one need to be validated in naturalistic

or quasi-naturalistic settings. Accurate models of individual-level processes can be scaled up
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to predict large-scale dynamics, much as evolutionary biologists use microevolutionary

models of events in the lives of organisms to understand long-term macroevolutionary trends.

Studies like Edgerton (1971); Henrich et al. (2004); Nisbett and Cohen (1996), and Prentice

and Miller (1993) remind us of the phenomena that we ultimately intend to understand and

provide significant constraints on theory development. More direct applications of microlevel

theory to macrolevel problems, like the application of Henrich (2001) of social learning

models to data on the spread of technological innovations, demonstrate the relevance of

experimental studies to the cultural transformations that we witness in daily life. We think that

researchers should not be shy about extrapolating findings in both directions, from the

laboratory to the field and visa versa.
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